A parametric family of quintic Thue equations
نویسندگان
چکیده
For an integral parameter t ∈ Z we investigate the family of Thue equations F (x, y) = x + (t− 1)xy − (2t + 4t + 4)xy + (t + t + 2t + 4t − 3)xy + (t + t + 5t+ 3)xy + y = ±1 , originating from Emma Lehmer’s family of quintic fields, and show that for |t| ≥ 3.28 ·1015 the only solutions are the trivial ones with x = 0 or y = 0. Our arguments contain some new ideas in comparison with the standard methods for Thue families, which gives this family a special interest.
منابع مشابه
Effective solution of families of Thue equations containing several parameters
F (X,Y ) = m, where F ∈ Z[X,Y ] is an irreducible form of degree n ≥ 3 and m 6= 0 a fixed integer, has only finitely many solutions. However, this proof is non-effective and does not give any bounds for the size of the possible solutions. In 1968, A. Baker could give effective bounds based on his famous theory on linear forms in logarithms of algebraic numbers. In the last decades, this method ...
متن کاملOn Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Isomorphic Simplest Cubic Fields
We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m+3m+9 and isomorphic simplest cubic fields. By applying R. Okazaki’s result for isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m + 9.
متن کاملOn Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Non-isomorphic Simplest Cubic Fields
We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m + 3m+ 9 and non-isomorphic simplest cubic fields. By applying R. Okazaki’s result for non-isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m+ 9.
متن کاملOn a Parametric Family of Thue Inequalities over Function Fields
is called a Thue equation, due to Thue [22] who proved, in the case R = Z, that such an equation has finitely many solutions. In the last decade, starting with the result of Thomas in [21], several families (at the moment up to degree 8; see [9] and the references mentioned therein) of Thue equations have been considered, where the coefficients of the form Fc(X,Y ) depend on an integral paramet...
متن کاملOn two-parametric family of quartic Thue equations
We show that for all integers m and n there are no non-trivial solutions of Thue equation x − 2mnxy + 2 ( m − n + 1 ) xy + 2mnxy + y = 1, satisfying the additional condition gcd(xy,mn) = 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000